top of page
K. Eric Drexler is an American scientist born on April 25, 1955. He is known for his work in nanotechnology and is often referred to as the "father of nanotechnology." Drexler's research focuses on the potential of molecular machines and their applications in various fields, including medicine and manufacturing. He has written several influential books on the subject, advocating for the responsible development of nanotechnology. K. Eric Drexler's contributions to science have made him a significant figure in the field of nanotechnology.
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"Likewise nanotechnology will, once it gets under way, depend on the tools we have then and our ability to use them, and not on the steps that got us there."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"My work at MIT had focused on what we could build in space once we had inexpensive space transportation and industrial facilities in orbit. And this led to various sorts of work in space development."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"The really big difference is that what you make with a molecular machine can be completely precise, down to the tiniest degree of detail that can exist in the world."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"But while doing that I'd been following a variety of fields in science and technology, including the work in molecular biology, genetic engineering, and so forth."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"My greatest concern is that the emergence of this technology without the appropriate public attention and international controls could lead to an unstable arms race."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"If you take all the factories in the world today, they could make all the parts necessary to build more factories like themselves. So, in a sense, we have a self-replicating industrial system today, but it would take a tremendous effort to copy what we already have."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"On the molecular scale, you find it's reasonable to have a machine that does a million steps per second, a mechanical system that works at computer speeds."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"But if we can manage it so people don't have things forced on them that they don't want, I think there's every reason to believe things can settle out in a situation that is recognizably better than the one we're stuck in today."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"I've encountered a lot of people who sound like critics but very few who have substantive criticisms. There is a lot of skepticism, but it seems to be more a matter of inertia than it is of people having some real reason for thinking something else."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"I had been impressed by the fact that biological systems were based on molecular machines and that we were learning to design and build these sorts of things."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"You can find academic and industrial groups doing some relevant work, but there isn't a focus on building complex molecular systems. In that respect, Japan is first, Europe is second, and we're third."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"It's a lot easier to see, at least in some cases, what the long-term limits of the possible will be, because they depend on natural law. But it's much harder to see just what path we will follow in heading toward those limits."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"After realizing that we would eventually be able to build molecular machines that could arrange atoms to form virtually any pattern that we wanted, I saw that an awful lot of consequences followed from that."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"In thinking about nanotechnology today, what's most important is understanding where it leads, what nanotechnology will look like after we reach the assembler breakthrough."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"Any powerful technology can be abused."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"Today we have big, crude instruments guided by intelligent surgeons, and we have little, stupid molecules of drugs that get dumped into the body, diffuse around and interfere with things as best they can. At present, medicine is unable to heal anything."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"An international race in the relevant technologies is getting under way at this point, not necessarily with an understanding of where that race leads in the long run, but strongly motivated by the short-term payoffs."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"The basic parts, the start-up molecules, can be supplied in abundance and don't have to be made by some elaborate process. That immediately makes things simpler."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"The other advantage is that in conventional manufacturing processes, it takes a long time for a factory to produce an amount of product equal to its own weight. With molecular machines, the time required would be something more like a minute."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
GettyImages-1390397976_b_edited.jpg
Quote_1.png

"Protein engineering is a technology of molecular machines - of molecular machines that are part of replicators - and so it comes from an area that already raises some of the issues that nanotechnology will raise."

Share on Facebook_Black.png
Share on X_edited.png
Painting Icon
bottom of page